内存替换策略

策略分类

Redis 4.0 之前一共实现了 6 种内存淘汰策略,在 4.0 之后,又增加了 2 种策略。

image-20230321160552048

我们可以按照是否会进行数据淘汰把它们分成两类:

  • 不进行数据淘汰的策略,只有 noeviction 这一种。
  • 会进行淘汰的 7 种其他策略。
    • 在设置了过期时间的数据中进行淘汰,包括 volatile-random、volatile-ttl、volatile-lru、volatile-lfu(Redis 4.0 后新增)四种。
    • 在所有数据范围内进行淘汰,包括 allkeys-lru、allkeys-random、allkeys-lfu(Redis 4.0 后新增)三种。

策略详讲

noeviction 策略

Redis 在使用的内存空间超过 maxmemory 值时,并不会淘汰数据,也就是设定的 noeviction 策略

对应到 Redis 缓存,也就是指,一旦缓存被写满了,再有写请求来时,Redis 不再提供服务,而是直接返回错误。

基于过期时间的四种策略

  • volatile-ttl:在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。

  • volatile-random:就像它的名称一样,在设置了过期时间的键值对中,进行随机删除。

  • volatile-lru: 会使用 LRU 算法筛选设置了过期时间的键值对。

  • volatile-lfu:会使用 LFU 算法选择设置了过期时间的键值对。

对所有数据的三种策略

  • allkeys-random 策略,从所有键值对中随机选择并删除数据;

  • allkeys-lru 策略,使用 LRU 算法在所有数据中进行筛选。

  • allkeys-lfu 策略,使用 LFU 算法在所有数据中进行筛选。

LRU:

LRU 算法的全称是 Least Recently Used,从名字上就可以看出,这是按照最近最少使用的原则来筛选数据,最不常用的数据会被筛选出来,而最近频繁使用的数据会留在缓存中。

不过,LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。所以,在 Redis 中,LRU 算法被做了简化,以减轻数据淘汰对缓存性能的影响。具体来说,Redis 默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构 RedisObject 中的 lru 字段记录)。

**LFU **

LFU算法中,可以为每个key维护一个计数器。每次key被访问的时候,计数器增大。计数器越大,可以约等于访问越频繁。并且借鉴LRU实现的经验,维护一个待淘汰key的pool。并且记录key最后一个被访问的时间,然后随着时间推移,降低计数器。我们可以通过设置不同的 lfu_log_factor 配置项,来控制计数器值增加的速度,避免 counter 值很快就到 255 了。LFU 策略还使用衰减因子配置项 lfu_decay_time 来控制访问次数的衰减。

淘汰的键

对于 Redis 来说,它决定了被淘汰的数据后,会把它们删除。即使淘汰的数据是脏数据,Redis 也不会把它们写回数据库。所以,我们在使用 Redis 缓存时,如果数据被修改了,需要在数据修改时就将它写回数据库。否则,这个脏数据被淘汰时,会被 Redis 删除,而数据库里也没有最新的数据了。